Wednesday, April 23, 2008
Dow Jones Industrial Index Hanging Man Candlestick Pattern Confirmation
With the down bar candlestick formation after the hanging man candlestick chart pattern more downslide is expected. The mid Bolinger Band support at 12531 will be the support that traders will be monitoring for possible rebounce. In case of unexpected upward movement the immediate resistance is at the black downtrend resistance line followed by the recent peak at 12894 .
Cosco 15 mins chart Uptrend Support Line
Uptrend bold blue line is the immediate support followed by $3.43 to $3.40 support band. Immediate resistance is $3.54 t0 $3.53 resistance band followed by $3.62 resistance level. Clearing $3.62 will propel price towards next resistance at $3.70 . Monitor 50 EMA support line. Set trailing stops to lock in profits.
Toshiba 32A3500E 32" LCD TV
Features
- 32-inch "meta brain PRO" LCD TV.
- WXGA (1,366x768) High Resolution Panel.
- 4,750:1 Dynamic Contrast Raio.
- 950:1 Contrast Ratio.
- 500cd/m2 Brightness.
- HD1080I/720p Ready.
- 8ms High Response Rate.
- 178o Wide Viewing Angle.
- Intelligent Backlight Control.
- 3D Colour Management.
- 2 HDMI Input (V1.3a with Lip Sync).
- SXGA PC Signal Compatible.
- Jet Slit Speaker System (Joint Developed with ONKYO).
- SRS WOW Surround Sound System.
- NICAM & Multi-system
Key stem cell research events
- 1960s - Joseph Altman and Gopal Das present scientific evidence of adult neurogenesis, ongoing stem cell activity in the brain; their reports contradict Cajal's "no new neurons" dogma and are largely ignored.
- 1968 - Bone marrow transplant between two siblings successfully treats SCID.
- 1978 - Haematopoietic stem cells are discovered in human cord blood.
- 1981 - Mouse embryonic stem cells are derived from the inner cell mass by scientists Martin Evans, Matthew Kaufman, and Gail R. Martin. Gail Martin is attributed for coining the term "Embryonic Stem Cell".
- 1992 - Neural stem cells are cultured in vitro as neurospheres.
- 1997 - Leukemia is shown to originate from a haematopoietic stem cell, the first direct evidence for cancer stem cells.
- 1998 - James Thomson and coworkers derive the first human embryonic stem cell line at the University of Wisconsin-Madison.
- 2000s - Several reports of adult stem cell plasticity are published.
- 2001 - Scientists at Advanced Cell Technology clone first early (four- to six-cell stage) human embryos for the purpose of generating embryonic stem cells.[30]
- 2003 - Dr. Songtao Shi of NIH discovers new source of adult stem cells in children's primary teeth.[31]
- 2004-2005 - Korean researcher Hwang Woo-Suk claims to have created several human embryonic stem cell lines from unfertilised human oocytes. The lines were later shown to be fabricated.
- 2005 - Researchers at Kingston University in England claim to have discovered a third category of stem cell, dubbed cord-blood-derived embryonic-like stem cells (CBEs), derived from umbilical cord blood. The group claims these cells are able to differentiate into more types of tissue than adult stem cells.
- August 2006 - Rat Induced pluripotent stem cells: the journal Cell publishes Kazutoshi Takahashi and Shinya Yamanaka, "Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors".
- October 2006 - Scientists in England create the first ever artificial liver cells using umbilical cord blood stem cells.[32][33]
- January 2007 - Scientists at Wake Forest University led by Dr. Anthony Atala and Harvard University report discovery of a new type of stem cell in amniotic fluid.[5] This may potentially provide an alternative to embryonic stem cells for use in research and therapy.[34]
- June 2007 - Research reported by three different groups shows that normal skin cells can be reprogrammed to an embryonic state in mice.[35] In the same month, scientist Shoukhrat Mitalipov reports the first successful creation of a primate stem cell line through somatic cell nuclear transfer[36]
- October 2007 - Mario Capecchi, Martin Evans, and Oliver Smithies win the 2007 Nobel Prize for Physiology or Medicine for their work on embryonic stem cells from mice using gene targeting strategies producing genetically engineered mice (known as knockout mice) for gene research.[37]
- November 2007 - Human Induced pluripotent stem cells: Two similar papers released by their respective journals prior to formal publication: in Cell by Kazutoshi Takahashi and Shinya Yamanaka, "Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors", and in Science by Junying Yu, et al., from the research group of James Thomson, "Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells": pluripotent stem cells generated from mature human fibroblasts. It is possible now to produce a stem cell from almost any other human cell instead of using embryos as needed previously, albeit the risk of tumorigenesis due to c-myc and retroviral gene transfer remains to be determined.
- January 2008 - Human embryonic stem cell lines were generated without destruction of the embryo[38]
- January 2008 - Development of human cloned blastocysts following somatic cell nuclear transfer with adult fibroblasts[39]
- February 2008 - Generation of Pluripotent Stem Cells from Adult Mouse Liver and Stomach: these iPS cells seem to be more similar to embryonic stem cells than the previous developed iPS cells and not tumorigenic, moreover genes that are required for iPS cells do not need to be inserted into specific sites, which encourages the development of non-viral reprogramming techniques
http://en.wikipedia.org/wiki/Stem_cell
What is known about adult stem cell differentiation?
Hematopoietic and stromal stem cell differentiation
As indicated above, scientists have reported that adult stem cells occur in many tissues and that they enter normal differentiation pathways to form the specialized cell types of the tissue in which they reside. Adult stem cells may also exhibit the ability to form specialized cell types of other tissues, which is known as transdifferentiation or plasticity.
Normal differentiation pathways of adult stem cells. In a living animal, adult stem cells can divide for a long period and can give rise to mature cell types that have characteristic shapes and specialized structures and functions of a particular tissue. The following are examples of differentiation pathways of adult stem cells (Figure 2).
- Hematopoietic stem cells give rise to all the types of blood cells: red blood cells, B lymphocytes, T lymphocytes, natural killer cells, neutrophils, basophils, eosinophils, monocytes, macrophages, and platelets.
- Bone marrow stromal cells (mesenchymal stem cells) give rise to a variety of cell types: bone cells (osteocytes), cartilage cells (chondrocytes), fat cells (adipocytes), and other kinds of connective tissue cells such as those in tendons.
- neural stem cells in the brain give rise to its three major cell types: nerve cells (neurons) and two categories of non-neuronal cells—astrocytes and oligodendrocytes.
- Epithelial stem cells in the lining of the digestive tract occur in deep crypts and give rise to several cell types: absorptive cells, goblet cells, Paneth cells, and enteroendocrine cells.
- Skin stem cells occur in the basal layer of the epidermis and at the base of hair follicles. The epidermal stem cells give rise to keratinocytes, which migrate to the surface of the skin and form a protective layer. The follicular stem cells can give rise to both the hair follicle and to the epidermis.
Adult stem cell plasticity and transdifferentiation. A number of experiments have suggested that certain adult stem cell types are pluripotent. This ability to differentiate into multiple cell types is called plasticity or transdifferentiation. The following list offers examples of adult stem cell plasticity that have been reported during the past few years.
- Hematopoietic stem cells may differentiate into: three major types of brain cells (neurons, oligodendrocytes, and astrocytes); skeletal muscle cells; cardiac muscle cells; and liver cells.
- Bone marrow stromal cells may differentiate into: cardiac muscle cells and skeletal muscle cells.
- Brain stem cells may differentiate into: blood cells and skeletal muscle cells.
http://stemcells.nih.gov/info/basics/basics4.asp