Friday, April 25, 2008

RNA Structure

Each nucleotide in RNA contains a ribose sugar, with carbons numbered 1' through 5'. A base is attached to the 1' position, generally adenine (A), cytosine (C), guanine (G) or uracil (U). Adenine and guanine are purines, cytosine and uracil are pyrimidines. A phosphate group is attached to the 3' position of one ribose and the 5' position of the next. The phosphate groups have a negative charge each at physiological pH, making RNA a charged molecule (polyanion). The bases may form hydrogen bonds between cytosine and guanine, between adenine and uracil and between guanine and uracil.[1] However other interactions are possible, such as a group of adenine bases binding to each other in a bulge,[2] or the GNRA tetraloop that has a guanine–adenine base-pair.[1]

Chemical structure of RNA
Chemical structure of RNA

An important structural feature of RNA that distinguishes it from DNA is the presence of a hydroxyl group at the 2' position of the ribose sugar. The presence of this functional group causes the helix to adopt the A-form geometry rather than the B-form most commonly observed in DNA.[3] This results in a very deep and narrow major groove and a shallow and wide minor groove.[4] A second consequence of the presence of the 2'-hydroxyl group is that in conformationally flexible regions of an RNA molecule (that is, not involved in formation of a double helix), it can chemically attack the adjacent phosphodiester bond to cleave the backbone.[5]

RNA is transcribed with only four bases (adenine, cytosine, guanine and uracil),[6] but there are numerous modified bases and sugars in mature RNAs. Pseudouridine (Ψ), in which the linkage between uracil and ribose is changed from a C–N bond to a C–C bond, and ribothymidine (T), are found in various places (most notably in the TΨC loop of tRNA).[7] Another notable modified base is hypoxanthine, a deaminated adenine base whose nucleoside is called inosine. Inosine plays a key role in the wobble hypothesis of the genetic code.[8] There are nearly 100 other naturally occurring modified nucleosides,[9] of which pseudouridine and nucleosides with 2'-O-methylribose are the most common.[10] The specific roles of many of these modifications in RNA are not fully understood. However, it is notable that in ribosomal RNA, many of the post-transcriptional modifications occur in highly functional regions, such as the peptidyl transferase center and the subunit interface, implying that they are important for normal function.[11]

Secondary structure of a telomerase RNA
Secondary structure of a telomerase RNA

The functional form of single stranded RNA molecules, just like proteins, frequently requires a specific tertiary structure. The scaffold for this structure is provided by secondary structural elements which are hydrogen bonds within the molecule. This leads to several recognizable "domains" of secondary structure like hairpin loops, bulges and internal loops.[12] There has been a significant amount of research directed at the RNA structure prediction problem.


Watson-Crick base pairs in a siRNA (hydrogen atoms are not shown)
Watson-Crick base pairs in a siRNA (hydrogen atoms are not shown)

http://en.wikipedia.org/wiki/RNA

1 comment:

Anonymous said...

Nice post and this post helped me alot in my college assignement. Thank you seeking your information.