Saturday, April 5, 2008

Chromosomes and Genes

Chromosomes

The human genome is composed of 23 pairs of chromosomes (46 in total), each of which contain hundreds of genes separated by intergenic regions.  Intergenic regions may contain regulatory sequences and non-coding DNA.
The human genome is composed of 23 pairs of chromosomes (46 in total), each of which contain hundreds of genes separated by intergenic regions. Intergenic regions may contain regulatory sequences and non-coding DNA.

There are 24 distinct human chromosomes: 22 autosomal chromosomes, plus the sex-determining X and Y chromosomes. Chromosomes 1–22 are numbered roughly in order of decreasing size. Somatic cells usually have 23 chromosome pairs: one copy of chromosomes 1–22 from each parent, plus an X chromosome from the mother, and either an X or Y chromosome from the father, for a total of 46.

Genes

There are estimated 20,000–25,000 human protein-coding genes.[1]

Surprisingly, the number of human genes seems to be less than a factor of two greater than that of many much simpler organisms, such as the roundworm and the fruit fly. However, human cells make extensive use of alternative splicing to produce several different proteins from a single gene, and the human proteome is thought to be much larger than those of the aforementioned organisms.

Most human genes have multiple exons, and human introns are frequently much longer than the flanking exons.

Human genes are distributed unevenly across the chromosomes. Each chromosome contains various gene-rich and gene-poor regions, which seem to be correlated with chromosome bands and GC-content. The significance of these nonrandom patterns of gene density is not well understood. In addition to protein coding genes, the human genome contains thousands of RNA genes, including tRNA, ribosomal RNA, microRNA, and other non-coding RNA genes.

Regulatory sequences

The human genome has many different regulatory sequences which are crucial to controlling gene expression. These are typically short sequences that appear near or within genes. A systematic understanding of these regulatory sequences and how they together act as a gene regulatory network is only beginning to emerge from computational, high-throughput expression and comparative genomics studies.

Identification of regulatory sequences relies in part on evolutionary conservation. The evolutionary branch between the human and mouse, for example, occurred 70–90 million years ago.[4] So computer comparisons of gene sequences that identify conserved non-coding sequences will be an indication of their importance in duties such as gene regulation.[5]

Another comparative genomic approach to locating regulatory sequences in humans is the gene sequencing of the puffer fish. These vertebrates have essentially the same genes and regulatory gene sequences as humans, but with only one-eighth the "junk" DNA. The compact DNA sequence of the puffer fish makes it much easier to locate the regulatory genes.[6]

http://en.wikipedia.org/wiki/Human_genome

No comments: