Saturday, April 12, 2008

Spintronics

Spintronics (a neologism for "spin-based electronics"), also known as magnetoelectronics, is an emerging technology which exploits the quantum spin states of electrons as well as making use of their charge state. The electron spin itself is manifested as a two state magnetic energy system.

The discovery of giant magnetoresistance in 1988 by Albert Fert et al. and Peter Grünberg et al. independently is considered as the birth of spintronics.


Theory

Spintronics describes technology that makes use of the spin state of electrons. It can provide an extension to electronics.

Electrons exhibit the basic properties of spin, charge, and mass. When the intrinsic spin of an electron is measured, it is found in one of two spin states, which we denote as spin up and spin down. Since the Pauli Exclusion Principle dictates that the quantum-mechanical wave function of two paired fermions must be antisymmetric, no two electrons can occupy the same quantum state, implying that an entangled pair of electrons cannot have the same spin. There is generally a splitting of the spin-up and spin-down energy levels via the Zeeman effect, so electrons with their spins aligned with an external field are less energetic than electrons with their spins anti-aligned. Electrons absorb or emit photons (quanta of electromagnetic energy) to change valence orbits, and they lose spin coherence by interacting with mutually resonant photon frequencies, causing the electrons to spin flip by energy transfer, through mutual spin-orbit coupling, and through photon emission.

In order to make a spintronic device, the primary requirement is to have a system that can generate a current of spin polarized electrons, and a system that is sensitive to the spin polarization of the electrons. Most devices also have a unit in between that changes the current of electrons depending on the spin states.

The simplest method of generating a spin-polarised current is to inject the current through a ferromagnetic material. The most common application of this effect is a giant magnetoresistance (GMR) device. A typical GMR device consists of at least two layers of ferromagnetic materials separated by a spacer layer. When the two magnetization vectors of the ferromagnetic layers are aligned, then an electrical current will flow freely, whereas if the magnetization vectors are antiparallel then the resistance of the system is higher.

Two variants of GMR have been applied in devices, current-in-plane where the electric current flows parallel to the layers and current-perpendicular-to-the-plane where the electric current flows in a direction perpendicular to the layers.

http://en.wikipedia.org/wiki/Spintronics

No comments: